Decitabine induces G2/M cell cycle arrest by suppressing p38/NF-κB signaling in human renal clear cell carcinoma.

نویسندگان

  • Donghao Shang
  • Tiandong Han
  • Xiuhong Xu
  • Yuting Liu
چکیده

OBJECTIVE The anti-neoplastic effects of decitabine, an inhibitor of DNA promoter methylation, are beneficial for the treatment of renal cell carcinoma (RCC); however, the mechanism of action of decitabine is unclear. We analyzed gene expression profiling and identified specific pathways altered by decitabine in RCC cells. METHODS Four human RCC cell lines (ACHN, Caki-1, Caki-1, and A498) were used in this study; growth suppression of RCC cells by decitabine was analyzed using the WST-1 assay. Apoptosis and cell cycle arrest were examined using flow cytometric analysis. Gene expression of RCC cells induced by decitabine was evaluated with cDNA microarray, and potential biological pathways were selected using Ingenuity Pathway Analysis. The activity of the p38-NF-κB pathway regulated by decitabine was confirmed by Western blotting. RESULTS Decitabine suppresses the proliferation of RCC cells in vitro. Although decitabine did not significantly induce apoptosis, decitabine caused cell cycle arrest at G2/M in a dose-dependent manner. Gene expression regulated by decitabine in RCC cells was investigated using microarray analysis. Ubiquitin carboxyl terminal hydrolase 1 (UCHL1), interferon inducible protein 27 (IFI27), and cell division cycle-associated 2 (CDCA2) may be involved in growth suppression of RCC cells by decitabine. The phosphorylation of p38-NF-κB pathway was suppressed by decitabine in RCC cells. CONCLUSIONS We investigated gene expression profiling and pathways modulated by decitabine in RCC cells. Decitabine was shown to suppress the growth of RCC cells via G2/M cell cycle arrest and the p38-NF-κB signaling pathway may play a role in the anti-neoplastic effect of decitabine in RCC cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nicotine-Induced Apoptosis in Human Renal Proximal Tubular Epithelial Cells

BACKGROUND Nicotine is, to a large extent, responsible for smoking-mediated renal dysfunction. This study investigated nicotine's effects on renal tubular epithelial cell apoptosis in vitro and it explored the mechanisms underlying its effects. METHODS Human proximal tubular epithelial (HK-2) cells were treated with nicotine. Cell viability was examined by using the WST-1 assay. Intracellular...

متن کامل

Xanthatin induces cell cycle arrest at G2/M checkpoint and apoptosis via disrupting NF-κB pathway in A549 non-small-cell lung cancer cells.

Xanthatin, a natural sesquiterpene lactone, has significant antitumor activity against a variety of cancer cells, yet little is known about its anticancer mechanism. In this study, we demonstrated that xanthatin had obvious dose-/time-dependent cytotoxicity against the human non-small-cell lung cancer (NSCLC) cell line A549. Flow cytometry analysis showed xanthatin induced cell cycle arrest at ...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

Lidamycin induces marked G2 cell cycle arrest in human colon carcinoma HT-29 cells through activation of p38 MAPK pathway.

Lidamycin (LDM), a member of the enediyne antibiotic family, is presently undergoing phase I clinical trials in P.R. China. In this study, we investigated the mechanisms of LDM-induced cell cycle arrest in order to support its use in clinical cancer therapy. Using human colon carcinoma HT-29 cells, we observed that LDM induced G2 cell cycle arrest in a time- and dose-dependent manner. LDM-induc...

متن کامل

Impact of Prolonged Fraction Delivery Time Modelling Stereotactic Body Radiation Therapy with High Dose Hypofractionation on the Killing of Cultured ACHN Renal Cell Carcinoma Cell Line

Introduction: Stereotactic body radiotherapy delivers hypofractionated irradiation with high dose per fraction through complex treatment techniques. The increased complexity leads to longer dose delivery times for each fraction. The purpose of this study is to investigate the impact of prolonged fraction delivery time with high-dose hypofractionation on the killing of cultured ACHN cells.Method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of clinical and experimental pathology

دوره 8 9  شماره 

صفحات  -

تاریخ انتشار 2015